A mesh with a single (skinning) deformer which had zero clusters would
erroneously register as skinned, leading GetRoodNode() to an assertion
failure. Fixed.
The FBX SDK looks for our textures and often finds them. It helpfully
tells us exactly where they are. Let's not throw that information away
and demand that the textures only exist in precisely the folders we are
aware of.
Fix the naming issues. Now the nodes are identified by pNode->GetUniqueID(), instead of its name. All dictionaries and references to nodes are replaced by its id, instead of its name.
This adds the first FBX PBR import path. Materials that have been
exported via the Stingray PBS preset should be picked up as native
metallic/roughness, and exported essentially 1:1 to the glTF output.
In more detail, this commit:
- (Re)introduces the STB header libraries as a dependency. We currently
use it for reading and writing images. In time we may need a more
dedicated PNG compression library.
- Generalizes FbxMaterialAccess to return different subclasses of
FbxMaterialInfo; currently FbxRoughMetMaterialInfo and
FbxTraditionalMaterialInfo.
- FbxTraditionalMaterialInfo is populated from the canonical
FbxSurfaceMaterial classes.
- FbxRoughMetMaterialInfo is currently populated through the Stingray
PBS set of properties, further documented in the code.
- RawMaterial was in turn generalized to feature a pluggable,
type-specific RawMatProps struct; current implementations are,
unsurprisingly, RawTraditionalMatProps and RawMetRoughMatProps. These
are basically just lists of per-surface constants, e.g. diffuseFactor or
roughness.
- In the third phase, glTF generation, the bulk of the changes are
concerned with creating packed textures of the type needed by e.g. the
metallic-roughness struct, where one colour channel holds roughness and
the other metallic. This is done with a somewhat pluggable "map source
pixels to destination pixel" mechanism. More work will likely be needed
here in the future to accomodate more demanding mappings.
There's also a lot of code to convert from one representation to
another. The most useful, but also the least well-supported conversion,
is from old workflow (diffuse, specular, shininess) to
metallic/roughness. Going from PBR spec/gloss to PBR met/rough is hard
enough, but we go one step sillier and treat shininess as if it were
glossiness, which it certainly isn't. More work is needed here! But it's
still a fun proof of concept of sorts, and perhaps for some people it's
useful to just get *something* into the PBR world.
Turns out Maya was always including normals in the FBX export, they were just a bit trickier to get to than originally surmised. We need to go through the proper element access formalities that takes mapping and reference modes into account.
Luckily we already have a helper class for this, so let's lean on that.
At the glTF level, transparency is a scalar; we just throw away any
color information in FBX TransparentColor. We still need to calculate
our total opacity from it, however. This is the right formula, which
additionally matches the deprecated (but still populated, by the Maya
exporter) 'Opacity' property.
This adds blend shape / morph target functionality.
At the FBX level, a mesh can have a number of deformers associated with it. One such deformer type is the blend shape. A blend shape is a collection of channels, which do all the work. A channel can consist of a single target shape (the simple case) or multiple (a progressive morph). In the latter case, the artist has created in-between shapes, the assumption being that linear interpolation between a beginning shape and an end shape would be too crude. Each such target shape contains a complete set of new positions for each vertex of the deformed base mesh.
(It's also supposed to be optionally a complete set of normals and tangents, but I've yet to see that work right; they always come through as zeroes. This is something to investigate in the future.)
So the number of glTF morph targets in a mesh is the total number of FBX target shapes associated with channels associated with blend shape deformers associated with that mesh! Yikes.
The per-vertex data of each such target shape is added to a vector in RawVertex. A side effect of this is that vertices that participate in blend shapes must be made unique to the mesh in question, as opposed to general vertices which are shared across multiple surfaces.
Blend Shape based animations become identical glTF morph target animations..
Fixes#17.
Lean on the excellent pre-existing support for creating multiple glTF
meshes from a single FBX mesh based on material type. All the triangles
with (at least one) non-opaque vertex get flagged as transparent
material. They will all go separately in their own mesh after the
CreateMaterialModels() gauntlet.
Fixes#25.
We were warnings against eInheritRSrs, which is actually the one type of
ineritance we're good with. It's eInheritRrSs we should freak out about.
That said, no need to do it for the root node -- at that point there is
no global transform to worry about.
Some FBX files have index arrays that contain -1 (indeed, that are
nothing but negative ones). Presumably the intention is to specify "no
material". In any case, let's not segfault.
* Further improvemens to texture resolution.
- Move towards std::string over char * and FbxString where convenient,
- Make a clear distinction between textures whose image files have been
located and those who haven't; warn early in the latter case.
- Extend RawTexture so we always know logical name in FBX, original file
name in FBX, and inferred location in local filesystem.
- In non-binary mode, simply output the inferred local file basename as
the URI; this will be the correct relative path as long as the texture
files are located next to the .gltf and .bin files.
Primary remaining urge for a follow-up PR:
- We should be copying texture image files into the .gltf output folder,
but before that we should switch to an off-the-shelf cross-platform
file manipulation library like https://github.com/cginternals/cppfs.
When we make that transition, all this texture resolution code will
undergo another refactoring.
- alphaMode is only BLEND for transparent materials.
- We use RawMaterial.type to figure out what's transparent.
- FBX TransparencyFactor is not opacity, but 1.0-opacity.
- Treat vertex coloured materials as transparent
- We should at least iterate over vertices here and see if any of them
actually are transparent
- Sort triangles properly: transparent ones render last!
- Nix GetFileFolder(). It was not helping. Always search for textures
- near the FBX file.
- Use RawTexture::name for the texture name and ::fileName for the
inferred local filename path.
Digging the property values and texture shadows thereof, associated with
a certain FbxSurfaceTexture, should clearly happen once per material,
not per polygon. Furthermore there is a pre-existing pattern of
Fbx-specific accessclasses in Fbx2Raw that we should follow.
Soon we'll be extracting more than Phong/Lambert properties here, and
then we'll need to do further refactoring.